Abstract
This code segment demonstrates the implementation of a logistic regression model for heart attack prediction using the Heart Attack Analysis & Prediction dataset.
Imports
import numpy as np
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification_report
Load Dataset
df = pd.read_csv("/kaggle/input/heart-attack-analysis-prediction-dataset/heart.csv")
df

X = df.drop(['output'], axis=1)
y = df['output']
Scaler
scaler = StandardScaler()
scaler.fit(X)
X_scaled = scaler.transform(X)
Test Train Split
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=0.2, random_state = 43)
Model Training
model = LogisticRegression()
model.fit(X_train,y_train)
Test Model
y_pred = model.predict(X_test)
print("Accuracy: {}".format(accuracy_score(y_test, y_pred)))
Accuracy: 0.8852459016393442
Analysis
feature_importance = pd.DataFrame({
'Feature': X.columns,
'Coefficient': model.coef_[0]
})
print(feature_importance.sort_values(by='Coefficient', ascending=False))

print(classification_report(y_test,y_pred))
